CH236 手册 1 <u>http://wch.cn</u>

USB PD 等多快充协议芯片 CH236

手册 版本: 1E http://wch.cn

1. 概述

CH236 为 Type-C 单口快充协议芯片,支持 PD2. 0/3. 0、PPS、BC1. 2 等快充协议,支持 AC-DC 或 DC-DC 恒压和恒流输出模式反馈调节,高集成度,外围精简。集成 VBUS 检测与放电功能,并且提供过压、过温、过流保护等功能。CH236 可广泛应用于交流电源适配器、车载充电器、UPS、移动电源等各类场合。

2. 功能特点

- 支持3. 3V-24V宽电压输入,调压精度20mV
- 支持PD2. 0/3. 0、PPS、BC1. 2等多种快充协议
- 支持USB Type-C PD, 支持正反插检测与自动切换
- 支持AC-DC和DC-DC多档恒压或恒流高压电源管理
- 单芯片高集成度,外围精简,成本低
- 线缆补偿100mV/1A
- 内置过流保护OCP、过温保护OTP、电源过压保护OVP、欠压保护UVP

3. 应用场合

- 交流电源适配器
- 车载充电器
- UPS
- 移动电源

4. 封装

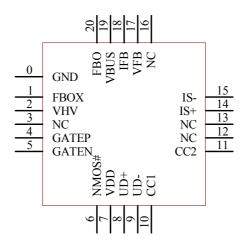


图 4.1 CH236D (QFN20_3*3) 引脚排列

5. 引脚

引脚号	引脚名称	类型	引脚说明
2	VHV	高压电源	高压正电源输入端,外接 1uF 退耦电容
0	GND	电源	公共接地端
4	GATEP	单向输出	用于控制 VBUS 电源输出
5	GATEN	单向输出	用于控制 VBUS 电源输出
7	VDD	工作电源	内部电源调节器 LDO 输出端,外接 1uF 退耦电容
8	UD+	双向三态	USB 总线 D+数据线
9	UD-	USB 双向	USB 总线 D-数据线
10	CC1	双向三态	Type-C CC1 输入输出
11	CC2	模拟双向	Type-C CC2 输入输出
14	IS+	差分放大	低压端的电流检测模块的正输入端
15	IS-	模拟输入	低压端的电流检测模块的负输入端
17	VFB	模拟输入	高压电源管理 PM 的恒压反馈连接端
18	IFB	模拟输入	高压电源管理 PM 的恒流反馈连接端
19	VBUS	高电压 模拟输入	VBUS 放电端口,支持高电压
20	FB0	高电压 模拟输出	多档恒压或恒流高压电源管理 PM 的输出端
1	FB0X	高电压 模拟输出	多档恒压或恒流高压电源管理 PM 的输出端
6	NMOS#	配置输入	NMOS 输出使能
3, 12, 13, 16	NC	NC	保留引脚

6. 引脚功能描述

6.1. 概述

CH236 支持 PD3. 0/2. 0/PPS,BC1. 2 等多种快充协议,支持 AC-DC 或 DC-DC 恒压和恒流输出模式 反馈调节,支持设备接入检测,集成 VBUS 放电功能,具有线缆阻抗补偿(线补)功能,并且提供过压、过温、过流保护等功能。

6. 2. VHV 引脚和 FBO 引脚

CH236 的 VHV 引脚为芯片的高压电源输入引脚,连接电源系统的输出端,FBO 引脚为多档恒压或恒流高压电源管理 PM 的输出引脚,连接电源系统的反馈引脚,CH236 将通过 FBO 引脚来调整电源的输出电压。CH236 刚上电时,调节的电源系统的输出电压默认为 5V,当设备接入后,CH236 会根据协议握手的情况自动调节电源系统的输出电压。

6.3. GATEN/GATEP 引脚

GATEN/GATEP 引脚用于驱动 MOS, 控制 VBUS 电源输出。当未接入设备时,MOS 关断;当检测到设备接入时,MOS 导通;当检测到设备移除/过压保护/过温保护/过流保护时,CH236 关断 MOS, 停止为设备供电,并且 VHV 电压恢复至 5V 默认电压。CH236 可以自由选择 MOS 驱动方式,用 GATEN 驱动 NMOS时需要将 NMOS#引脚短接到地,使用 GATEP 驱动 PMOS 时,需要将 NMOS#引脚悬空。

6. 4. CC1/CC2 引脚

CC1/CC2 引脚用于设备接入检测, PD 协议握手, CH236 支持 Type-C 协议定义的 DFP 模式 500mA,

1.5A 或者 3A 的电流广播。如果设备连接,CH236 会尝试进入 PD 模式与设备进行通讯握手。若 PD 宣告电流大于 3A,则设备接入时会先进行 E-Mark 通讯,E-Mark 握手成功,并且线缆宣告电流为 3A 以上,则 Source Capability 消息支持 3A 以上,否则 Source Capability 消息不超过 3A。

6. 5. UD+/UD-引脚

UD+/UD-引脚用于 BC1.2 快充协议握手。

6. 6. VBUS 引脚

VBUS 引脚用于泄放 VBUS 上的能量,需连接至 VHV。如果 CH236 检测到 VBUS 电压过高,则打开 VBUS 放电功能,直到 VBUS 电压处于安全电压以内。

6.7. 环路控制电路(VFB, IFB, IS+, IS-, FB0)

CH236 支持 AC-DC 和 DC-DC 电源恒压、恒流输出模式,FB0 引脚为电源管理反馈驱动端,VFB、IFB 引脚分别为恒压和恒流反馈连接端,IS+/IS-引脚用于输出电流检测。

6.7.1. AC-DC 拓扑的恒压补偿电路

恒压补偿电路由功率级输出采样电路、恒压环路的差分运放电路和 FBO 引脚控制电路组成。VFB 引脚需连接一环路补偿电容至 FBO 引脚,参考图 8.1 设计。

6. 7. 2. AC-DC 拓扑的恒流补偿电路

CH236 支持恒流模式输出。环路补偿由 IFB、IS+、IS-、FB0 引脚之间的补偿电路实现。IFB 引脚需连接一环路补偿电容至 FB0 引脚,参考图 8.1 设计。通过改变 IFB 到 FB0 之间的电容值可以调节恒流的输出稳定性。

6. 7. 3. DC-DC 拓扑的恒压恒流设计

CH236 用于支持 DC-DC 拓扑时,参考图 8.2 设计。由于 FBO 方向单一,只能吸入电流,需在 FBO 输出位置加三极管做反相,并且需将 DC-DC 的默认输出电压配置成比 VBUS 最大输出电压高 2V 的电压。DC-DC 拓扑恒压恒流补偿环路与 AC-DC 拓扑相关设计相同。

7. 保护功能描述

7.1.过压保护

CH236 通过检测 VHV 引脚上的电压来实现过压保护功能,过压保护电压为恒压环路设定的 120%,根据快充协议的协商,该门限电压会自动发生变化,但始终是设定值 120%。当发生过压保护后,CH236 会关断 MOS,并进入放电状态直到所有故障信号消失,然后重新检测设备接入。

7. 2. 过温保护

CH236 在温度超过 138℃左右时会发生过温保护。当发生过温保护后,CH236 会关断 MOS,并进入放电状态直到温度低于 100℃且所有故障信号消失,然后重新检测设备接入。

7.3. 过流保护

CH236 检测到输出电流超过门限电流时会发生过流保护,门限电流为设定值的 120%。当发生过流保护后, CH236 会关断 MOS,并进入放电状态直到所有故障信号消失,然后重新检测设备接入。

7. 4. 欠压保护

CH236 检测到 VHV 引脚上的电压低于 2.4V 时会发生欠压保护。当发生欠压保护后,CH236 会关断 MOS,并进入复位待机状态直到所有故障信号消失,然后重新检测设备接入。

7.5. 阻抗补偿(线补)功能

CH236 具有线缆阻抗补偿(线补)功能,线补系数为 100mV/A。

8. 应用参考电路

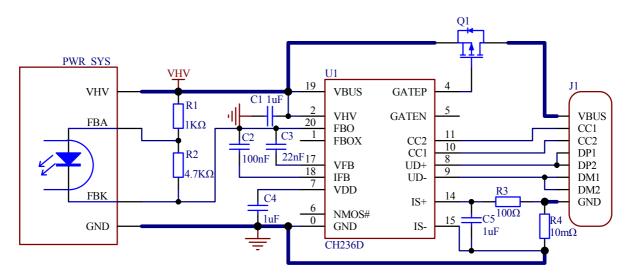


图 8.1 CH236 搭配 AC-DC 电源,使用 GATEP 引脚驱动 PMOS 时的参考电路

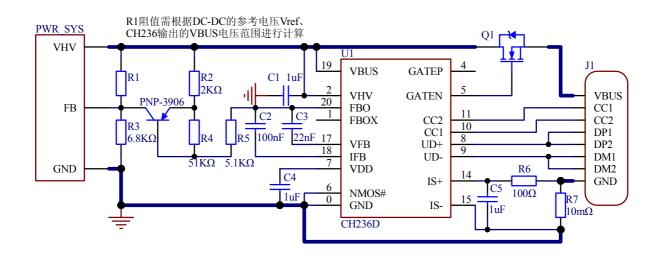


图 8.2 CH236 搭配 DC-DC 电源,使用 GATEN 引脚驱动 NMOS 时的参考电路

CH236 配合 DC-DC 电源时,需配置 DC-DC 的默认输出电压为 VBUS 最高输出电压+2V,例如: VBUS 输出电压范围是 5-12V 时,需配置默认输出电压为 14V,此时 R1=14/Vref*6. 8K-6. 8K。

Vref=1.25V, VBUS 最高输出 20V 时: R1=110K。

Vref=1.25V, VBUS 最高输出 12V 时: R1=68K。

9. PCB 设计注意事项

PCB 设计时注意 CH236 的 VHV/VDD 引脚对地退耦电容靠近芯片管脚摆放。

电流取样尽量采用开尔文测试法来降低误差,IS+/IS-需串接 RC 滤波电路后直接连接至取样电阻两端。

10. 参数

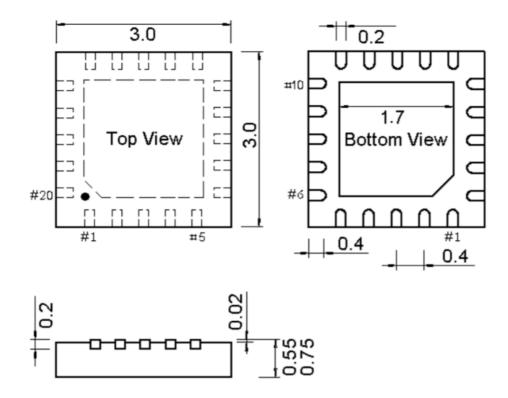
10.1.绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度(VHV<16V)	-40	110	$^{\circ}$ C
TA	工作时的环境温度(VHV>=16V)	-40	100	$^{\circ}\mathbb{C}$
TS	储存时的环境温度	-55	125	$^{\circ}$ C
VDD	工作电源电压(VDD 引脚接电源,GND 引脚接地)	-0. 5	6. 0	V
VHV	高压电源电压(VHV 引脚接电源,GND 引脚接地)	-0. 5	25. 0	٧
VIO	UD+, UD-, CC1, CC2, IS+, IS-引脚上的电压	-0. 5	VDD+0. 5	٧
VIOHV	GATEN, GATEP, VBUS, FBO 引脚上的电压	-0. 5	25	٧
PD	整个芯片的最大功耗(VHV 电压*电流+VBUS 放电功耗)	-0. 5	300	mW
VIOCC	CC1, CC2 引脚上的电压	-0. 5	20	V
ESD	人体模型(HBM)		2	KV

10.2. 推荐工作条件

名称	参数说明	最小值	最大值	单位
VHV	VHV 引脚上的电压	5	22	V
VIOHV	FBO, VBUS 引脚上的电压	0	22	٧
VIOLV	CC1, CC2, UD+, UD-引脚上的电压	0	VDD	V


10.3. 电气参数

(测试条件: TA=25℃)

名称	参数说明	最小值	典型值	最大值	单位
VIL	TTL 低电平输入电压	0		1. 3	٧
VIH	TTL 高电平输入电压	2. 4		VDD	٧
VIX	斯密特 TTL 输入翻转电压(额定压差为 0.3V)	1. 6		2. 2	٧
VOL	低电平输出电压(15mA 峰值吸入电流)		0. 35	0. 5	٧
VOH	高电平输出电压(8mA 峰值输出电流)	VDD-0. 5	VDD-0. 35		٧
OTC	过温保护		138±15		${\mathbb C}$

11. 封装信息

封装形式	塑体宽度	引脚间距		封装型号
QFN20	QFN20 3*3mm		15.7mil	CH236D

说明: 封装信息图中标注的单位均为 mm (毫米)。

12. 订货信息

	CH236	D	1	Α	-XXX	
芯片型号						
芯片封装	D :QFN20 3*3mm					
输出电压档位	配置码含义详见附表					
电源配置	A:AO 引脚驱动					
定制型号编码	无 :标准型 XXX :定制	 型号编码				

订货标号含义及输出电压档位

	7. 5. 6. 7. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.							
配置码	输出电压配置							
11.直特	PDO 1	PDO 2	PDO 3	PDO 4	PDO 5	PDO 6	PDO 7	
1	5V@3A	9V@2A	12V@1.5A			3.3~5.9V@3A	3.3~11V@2A	
2	5V@3A	9V@2A				3.3~5.9V@3A	3.3~11V@2A	
3	5V@3A	9V@3A	12V@2.25A			3.3~5.9V@3A	3.3~11V@2A	
4	5V@2.4A			14.5V@2A				
5	5V@3A	9V@3A	12V@2.5A			3.3~12V@2.5A		
6	5V@3A	9V@3A	12V@2.5A	15V@2A	20V@1.5A	3.3~12V@2.5A		
7	5V@3A	9V@3A	12V@3A	15V@3A				
8	5V@3A	9V@3A	12V@3A	15V@3A	20V@3A			
9	5V@3A	9V@3A	12V@3A	15V@3A	20V@3A/3.25A	5~11V@3A	5~20V@3A	
Α	5V@3A	9V@3A		15V@2A	20V@1.5A			
В	5V@3A	9V@3A	12V@3A	15V@3A	20V@1.5A	3.3~12V@2.5A		
С	5V@3A	9V@2.22A	12V@1.67A			3.3~5.9V@3A	3.3~11V@2A	
D	5V@3A	9V@2.22A						
E	5V@3A	9V@2.22A	12V@1.67A					
其他	定制							